最權威北美放射學會年會回顧:AI的進化與下一個前沿

人工智能
2018
12/27
14:13
人工智能學家
分享
評論

人工智能在成像領域的前景必須為終端用戶帶來時間節省、資源優化、精度增益和感知增益(接近精準健康方法)。前兩個是指生產力方面,而后兩個是指質量方面。人工智能在成像領域的腳步不會停留在這里——它已經幫助重建新型行業。下一個前沿領域將是改善患者的生活并幫助放射科醫生以更有效的方式實現他們的行業價值——從圖像分析、工作流程應用,到后來的智能醫學成像機。

全球最權威的放射學會議——北美放射學會(RSNA)年會于 11 月 25 日至 11 月 30 日舉行。作為每年醫學領域的盛會之一,本次 RSNA 集中了全球最領先的醫療機構及先進技術,也代表著這一領域未來的發展方向。

隨著深度神經網絡在診斷成像領域不斷取得重大突破,人工智能也成為本次 RSNA 關鍵詞之一。據統計,去年的 RSNA 有 49 家參展商是機器學習公司,其中 22 家是首次參展。今年數字增加了一倍多,達到 104 個,其中 25 家首次參展。從展位到會議,再到大廳周圍的一對一對話,幾乎每家公司都樂于談論他們在該領域的進步將如何幫助放射科醫生和患者。

雖然許多技術仍處于開發或審批階段,我們確實也看到了不少開箱即用的工具,這項技術也正在放射科醫生工作方式和流程發生新的變化,拒絕與之合作的放射科醫生將會被淘汰。

AI 被用于最重要的臨床步驟——成像分析

近日,市場調查機構 Frost&Sullivan 指出,在 114 家活躍于醫學成像領域的 AI 創業公司中,絕大多數都是針對醫學成像的圖像分析。識別和分析圖像中的特定特征是放射科醫師工作的關鍵,由于他們的研究結果皆基于此分析,因此它構成了成像工作流程中最重要的臨床步驟。在整個醫療健康領域,初創公司魚龍混雜,但主要還是集中在醫療成像 AI 領域的圖像分析。其中,計算機斷層掃描和核磁共振成像領域的應用最為人關注。

比如在核磁共振成像領域,三星利用人工智能技術,開發了一種可以顯示膝蓋軟骨厚度等信息的新軟件,為膝蓋關節炎患者提供患處圖像。不過,展示的是產品原型,據報道該軟件也不會出售。

另外,數字 X 射線,乳房 X 線照相術(包括 3D 斷層合成),眼底成像(眼睛),超聲圖和心電圖等領域的人工智能應用也頗受關注。盡管目前大多數成像設備供應商尚未涉及這一領域,但西門公司醫療部今年在 RSNA 上首次推出了 AI-Rad Companion Chest CT,這項技術利用了共計 3.25 億的帶標注圖像,用于訓練 AI 算法。該智能軟件助手可以獲取 CT 圖像并顯示胸廓結構,標記其中潛在的異常情況,最后將測量結果包括對心臟、主動脈、肺和冠狀動脈的診斷一同放入報告中。

通用電氣醫療集團推出了 Edison 平臺,該平臺匯集了現有合作伙伴的所有 AI 算法。三星也展示了自己在這些領域的進展。比如,基于 AI 技術的超聲系統 S-Detect,軟件通過超聲圖像進行乳腺病變分析,進而監控女性健康。據介紹,該技術可以使任職經驗達 4 年或更短時間的臨床醫生的診斷精準度從 0.83 提升到 0.87。目前,該軟件已應用于三星專有的放射學超聲系統。再比如,三星基于數字 x 線攝影的 AI 軟件 SimGrid,可清晰地顯示出胸部 X 光片中被骨遮擋的肺組織。

在應用廣度方面,與會人士表示相比去年 RSNA,今年 AI 成像技術在應用上明顯更加全面,不只局限于肺結節檢測,在心腦類疾病檢測中也大放異彩。

AI 被用于認知性工作流程,提升處理速度

RSNA 各論壇的許多放射科醫師都表達了對擺脫簡單病例、在復雜病例上花費更多時間的興趣。除了圖像分析,成像工作流程中還有其他幾個步驟也可以利用 AI,比如從定序到報告(reporting),都可以開發相應的 AI 解決方案。事實上,大多數創新也都與簡化工作流程相關,比如提升簡單任務自動化,加快處理速度。

比如,用于分類、工作列表分配和工作流程編排的 AI 應用程序。Aidoc(以色列)、Zebra Medical Vision(以色列)、vRad 和 GE Healthcare 等公司展示了這些方面的最新進展。Aidoc 將專有的 AI 用于每年透過電腦斷層掃描生成的數百萬張圖像,可以在人類放射科醫生審視結果之前,抓出重要問題,投放到屏幕上顯示警報。目前,Aidoc 已經經過美國和歐洲的批準,可用于評估腦出血和脊柱骨折的掃描結構。

另一個較為先進的領域是決策支持,用于決定臨床治療的下一步驟,代表性的例子包括 GEhealthcare 的 Imaging Related Clinical Context、Philips 的 IntelliSpace Oncology 和 Nuance 的 PowerScribe 360 Clinical Guidance。

比如,Nuance PowerScribe One 能將醫生聽寫即時轉換為相關、有條理的結果,不僅僅是醫生說的話,更包含了患者臨床狀況信息。也就是說,它不僅僅是一個支持語音的文本報告創建工具,它也正在成為一個集成平臺,使放射科醫生能夠更快速輕松地獲取、共享和處理患者的重要信息。而 GE IntelliSpace Oncology(癌癥)云計算精準醫學平臺能為醫生提供臨床決策支持。

在無法深入了解所有其他步驟細節的情況下,有兩個工作流程——定序(ordering)和流程調度(scheduling) 仍然可以從 AI 技術中受益。為醫生提供決策支持的公司最適合在定序階段充分這類解決方案,而調度解決方案可通過改善流程調度(比如取消)來優化利用率。人工智能在這一領域有極大的發展空間,能夠確保工作流程更加高效,并以前所未有的方式輔助放射科醫師工作。

成像設備的更加智能化

設備制造商為使成像設備更加智能化,正準備將 AI 引入掃描儀或周邊設備。

例如,佳能首次推出高級智能 Clear-IQ 引擎(AICE)圖像重建解決方案,該方案使用人工智能從低輻射劑量、低質量圖像中獲取高質量圖像。西門子醫療公司已經擁有 FAST 3D 相機,可以有助于患者的病灶成像,無需更高的劑量,提高圖像質量,防止重復掃描。

除了這些案例外,還有其他領域。比如,設備具備「自我意識」,讓設備進行「自我診斷」其組件是否良好。這些功能可能是 AI 與成像設備發展的未來,它們讓機器實現真正的智能化。

打造商業案例

技術進步固然可貴,但只有被市場理解和接受才能真正改變我們的生活。放射工作流程中的工作人員——技術人員、放射科醫師、管理人員、醫院管理人員甚至病人——都有不同的需求,這些都可由 AI 解決。

例如,時間密集型任務的自動化可以幫助提高生產力,AI 支持的圖像分析可以幫助提高準確性,患者護理流程的可預測性和個性化可以幫助改善結果等。

商業規模的開發,驗證和部署這些解決方案都需要從生態角度出發,因為幾個合作關系與協議會讓這些工作變成一個復雜的生態問題。目前,最接近終端用戶的商業案例包括,從提供醫院在一個平臺上訪問多個供應商 AI 解決方案的在線市場的開發,到設備制造商將解決方案與供應商的解決方案集成。

不過,在「后臺」也有一些其他進展。例如與云計算方法供應商合作的技術巨頭,為設備制造商提供提高計算能力的解決方案的計算硬件制造商,繼續構建新的 AI 算法并推出初創公司的學術機構。

最終,AI 應改善病患護理

AI 不應僅僅是幫助放射科醫生管理病例或更快地進行診斷,最終應該改善患者護理。這是本次會議和其他會議上放射科醫生的共識。

比如,有專家指出能否有一個以患者為中心的應用程序。它是一個從語音到文本的軟件,可以自動將復雜的醫學術語翻譯成患者可讀的報告。雖然其他專家表示,這種類型的技術開發起來非常困難(如果不是不可能的話),但它表明放射科醫師和供應商都對患者問題也感興趣。

農村地區和發展中國家的專家對人工智能的影響前景也特別感興趣。人們的共識似乎是設備,特別是價格較低的系統,能比合格的醫護人員更快地普及開來。

AI 與放射科醫生:協助與增強,但不予合作的會被淘汰

現在人工智能成像的理念基本塵埃落定——這個理念曾風靡整個行業。放射科醫生提出的問題已經從「它會取代我嗎?」變成「它能幫助我嗎?」——確實如此。

在展會現場,參展商很快指出,任何目前可用的人工智能技術,以及任何近期的技術,都不是要取代放射科醫師,而是要提高放射科醫師的能力。

到目前為止,沒有任何東西可以繞過放射科醫生的眼睛。相反,展會上展出的大部分產品 :從 GE Edison 到三星、再到 Fujifilm 的 REiLI,提供了深入學習以幫助分類案例。通過這些程序,計算機可以檢測到任何異常,然后告知放射科醫師。

即使程序可以發展到計算機可以完全繞過人眼,專家說,它仍然可能不會影響該領域。心臟病學就是一個例子,雖然心電圖可以被計算機讀取,但是,責任問題導致心臟病學家在閱讀和解釋它們方面仍然發揮著重要作用。其他專家也回應了同樣的擔憂,他們問道:「哪家公司將成為第一個承擔房間內無放射科醫生風險的公司?」

幾乎每個專家都同意,放射科醫師至少需要在設計和確認(confirm)任何人工智能方面發揮作用。

總之,關于 AI 技術的投資形勢好——Frost & Sullivan 估計,到目前為止,全球已經為這項技術的開發投資了 37 億美元(截至 2018 年 9 月啟動資金為 19 億美元),而且未來會有更多的 AI 初創企業獲得融資。

然而,人工智能在成像領域的前景必須為終端用戶帶來時間節省、資源優化、精度增益和感知增益(接近精準健康方法)。前兩個是指生產力方面,而后兩個是指質量方面。最初承諾的資源節約體現在生產力方面,而質量上的節約可能需要很長時間才能實現,這也歸因于缺乏適當的度量標準來衡量結果和由此產生的質量節省,從生產力的角度來看,這更易度量。

人工智能在成像領域的腳步不會停留在這里——它已經幫助重建新型行業。下一個前沿領域將是改善患者的生活并幫助放射科醫生以更有效的方式實現他們的行業價值——從圖像分析、工作流程應用,到后來的智能醫學成像機。

【來源:人工智能學家】

THE END
廣告、內容合作請點擊這里 尋求合作
ai
免責聲明:本文系轉載,版權歸原作者所有;旨在傳遞信息,不代表砍柴網的觀點和立場。

相關熱點

人臉識別、語音助手、智能識圖、AI美顏、智慧識屏、隨行翻譯……2018年以來,手機行業搭載AI技術的新賣點層出不窮,究竟哪些才是最常使用的功能?哪些功能是徒增成本、并無實用的“花瓶”?
人工智能
互聯網雖然寒冬,但人工智能熱度不減,成果不斷。今年所有的互聯網公司,都在ALL in AI。百度、騰訊、阿里巴巴、京東等互聯網巨頭甚至都在美國硅谷大肆高薪挖掘人工智能人才。
人工智能
人工智能已經取得了顯著的進步,但事實上,剛剛起步的技術和有偏見的數據也不可避免地會產生人類未曾想到的錯誤。這就是為什么審查人工智能故障是必要和有意義的。
人工智能
近日,中國信息通信研究院副院長何桂立在由中國通信工業協會、中國通信工業協會物聯網應用分會主辦的“中國物聯網產業賦能高峰會”上共同探討了物聯網的演進與發展。
人工智能
騰訊AI Lab團隊在arXiv發表論文,通過對AI進行訓練,并與《王者榮耀》頂級人類玩家PK,最后獲得了48%的勝率。
人工智能

相關推薦

1
3
主站蜘蛛池模板: 日本免费网站视频www区| 亚洲AV无码潮喷在线观看| 久久机热这里只有精品无需| 美女激情视频网站| 国产欧美一区二区久久| 亚洲AV无码国产精品永久一区| 亚洲欧美日韩在线一区二区三区| 免费毛片a线观看| 免费成人在线电影| 国产乱妇无码大片在线观看| 国产三级精品三级在专区| 史上最新中文字幕| 免费超爽大片黄| 人妻少妇久久中文字幕| 亚洲国产成人久久一区久久 | 狠狠色综合久久婷婷| 直接观看黄网站免费视频| 男人和女人做爽爽视频| 狠狠色噜噜狠狠狠狠98| 国产毛片在线看| 99re在线这里只有精品免费| 成人毛片18女人毛片免费| 久久精品人人爽人人爽| 欧美啊v在线观看| 亚洲精品福利网站| 精品人妻一区二区三区四区| 国产一级毛片在线| 黑人粗大猛烈进出高潮视频 | 成人伊人青草久久综合网破解版| 久久久久久久久久久久久久久久久久| 日韩精品久久久肉伦网站| 亚洲va在线va天堂va不卡下载| 欧美成人观看免费完全| 亚洲欧美精品日韩欧美| 波多野结衣大战黑鬼101| 依依成人精品视频在线观看| 精品久久久久久久九九九精品| 午夜免费福利影院| 精品无码av一区二区三区| 古代级a毛片在线| 美国式禁忌在完整有限中字|